Try IrisGPT for free on your own data

Get started with IrisGPT within a few minutes

Try for Free
Aug 01, 2023 | 9 Mins read

How Customer Service Automation Works: Benefits, Practices & Processes

Large and small businesses have had to re-look at their support automation processes and technology investments, given the promise of Generative-AI for support automation. Organizations now have easy access to generative AI technology - via DIY open-source projects or secure Enterprise Support Automation platforms like IrisAgent. But how does an organization get its support automation strategy and implementation right to improve customer satisfaction? 

This comprehensive guide discusses the key steps to implement a successful customer service automation strategy. It outlines four key steps to use Generative-AI effectively.

  1. Knowing how and where to start 

  2. Identifying what to automate 

  3. Key metrics to track progress

  4. Establishing a continuous automation approach for long-term success

The process map below summarizes the steps above,

support automation steps

The following sections detail the steps above for customer service strategy, the best practices, and tips the IrisAgent team has learned to implement support automation for clients such as, Darwinbox, Agorapulse, Teachmint, and many others. Check out the case study of how Teachmint implemented customer service automation here

Step 1: ANALYZE - Knowing how and where to start 

Generative AI is powered by huge machine learning models pre-trained on vast amounts of data, referred to as foundation models (FMs). A subset of foundation models called large language models (LLMs) is trained on a large number of words across many natural-language tasks. In the case of support automation, LLMs are trained on historical support data as well as institutional knowledge. Thus, the first step in customer service automation is integrating key systems that hold this data. Following are the key systems to typically integrate with (Tip: take note of the uncommon, often missed out engineering systems), 

  1. CRM Systems: Starting with the obvious, most support organizations over the years have made significant investments in CRM systems, popular ones being Salesforce, Zendesk, Microsoft Dynamics, Intercom, ServiceNow, and Freshworks.                       

    • Best practice: Have at least one year of data made available to the LLM model in use.

  2. Knowledge Bases/FAQs: These are either part of CRM systems, help documentation or articles available to support teams. 

    • Best practice: Have at least one year of frequently accessed articles available to the LLM model in use

  3. Engineering bugs: This area is often missed, but vast amounts of institutional knowledge are buried inside engineering bug-tracking software or project management software such as JIRA and Confluence by Atlassian. 

    • Best practice: Have at least two years of product release-related information. We recommend more historical data access here as engineering systems often hold data that are precursors or predictors of issues that can be anticipated and potentially automated.

  4. Service Alerts:  In the case of enterprise SaaS, it is common to share service alerts internally and with customers via tools such as pagerDuty.

    • Best practice: Have at least three months of service alert information.

A key point to note: While integrating into CRM systems is obvious and low-hanging fruit, integrating Engineering bugs and Service Alerts should be an equal priority, as the most accurate institutional product knowledge often lies with engineering and DevOps teams.

Step 2: AUTOMATE - Identifying what to automate

Once the first step of integrating the institutional knowledge is complete and your LLM model has access to rich historical data, the second step is to systematically analyze data, categorize it, and uncover what to automate vs. topics best left to human-assisted support.  The following steps outline a reliable approach, 

  1. Auto-tagging - Helps classify content for keywords associated with root-cause analysis, correlations to existing issues, customer intent, and sentiment. Accuracy in tagging will form the foundation of the following three types of automation.

  2. Full automation, i.e., no human intervention: Via bots, Intelligent Virtual Agents for Voice and digital support interactions. The frequency and recency of auto-tagging of content guide what should be fully automated. The IrisAgent platform specializes in auto-tagging, quickly highlights the top tags, and provides recommendations on what to automate to improve overall customer experience.

    • Best practice: Questions related to the top 5 tags in the last 6-12 months are great candidates to start full automation. In our experience, automating these delivers 40 to 50% ticket deflection.  This is a good place to start. Anything beyond the top 5 does result in false positives and, unfortunately, the undesired consequence of a “bad bot experience” by customers. We do not recommend over-automating initially.

  3. Agent Assist: This is where AI helps an agent address questions with potential answers in real-time.  Agent Assist is designed to aid the agent rather than take over full automation.

    • Best practice: Take the top 10 auto-tagged content from the past two years and deliver that as agent assist capability. IrisAgent provides this as a side-by-side widget inside CRM systems.

  4. Workflows and alerts: This is the category where items not automated in the aforementioned steps are seamlessly handled via intelligent workflows that alert the right support representative of subject matter experts. IrisAgent platform allows for easy configuration of alerts and notifications to cross-functional teams.

    • Best practice: Implementing cross-functional workflows. Often, engineering teams are disconnected from the frontline. Alerting them promptly brings in SMEs sooner for a timely resolution.  The IrisAgent platform was built with the premise that pulling in engineering knowledge early and often can result in effective support. IrisAgent platform provides robust OOB cross-functional workflows and alerts, ready to use up deployment.

Automated Customer Service


Step 3: Key Metrics

Most traditional support operations measure ticket counts, response times, and SLA attainment and further drill down into product categories, severity, and regional performance in the case of distributed teams.   With support automation, a new set of metrics has emerged. While we deal with information overload, we have identified the following key metrics for customer service automation, 

  1. Ticket Deflection Rate - i.e., how many customer interactions and questions got addressed without a human interaction Measures the effectiveness of automation via bots.

  2. Mean Time to Resolution (MTTR) - The time it takes to solve an issue. This helps understand the efficacy of agent assistance and workflows implemented.

  3. Escalations - Helps understand issues that remain unaddressed or indicate a broader CSAT problem.

  4. Agent Performance - Helps understand if the customer service agents find the real-time assist technologies useful.

  5. Engineering and Product Health - Ongoing incidents, Product status, and Historical incidents - Provides insights into overall product quality and effectiveness of engineering processes for development and quality assurance. 

The above reports should be incorporated into weekly or monthly metrics tracking. The IrisAgent platform makes these available as part of out-of-the-box dashboards and reports.

Best Practice: Not too many companies track Engineering Health, which often is a leading indicator for issues that can be anticipated. We recommend adding this metric to your overall reporting. IrisAgent delivers this unique insight out of the box.

Step 4: Establishing continuous automation

Once an organization has implemented the above steps for customer service automation, monitoring metrics and changes to auto-tagging data is important and adapting the automation mix accordingly.

Best practice: Establish a review every six months and make appropriate changes, i.e., automate new categories and move older categories to agent assist or to process workflows.

Here’s why you need customer service automation and AI in today’s economic climate

Support Automation and AI in today's economic climate

These days, headlines seem to be dominated by the geo-political crisis and unfavorable macroeconomic environment conditions - inflation, supply-chain issues, layoffs, impending recession, falling stock prices, energy crisis, and the list goes on and on.  These tough conditions are forcing organizations to rethink their business plans.  If there is a common theme today, it is about,

  • Optimizing for costs.

  • Doing more with less.

  • Ensuring employees are engaged and at their best productivity.

While the headlines may be negative, business leaders must remind themselves to “Never let a good crisis go to waste” - as Winston Churchill, the war-time prime minister of the United Kingdom, famously stated during World War II. In these situations, smart use of technology combined with optimized process engineering can help cut costs, keep employees engaged, drive productivity, and ultimately help build a profitable business even in tough economic conditions.

At IrisAgent, AI-powered customer service automation is built to deliver the outcomes above for support organizations, especially with product-led growth companies.  The IrisAgent platform helps organizations do more with less by

  • Applying AI to Support operations - automated tagging and correlation of issues in CRM systems with backend systems used by engineering and DevOps.  IrisAgent supports all popular CRM systems, such as Salesforce, Zendesk, Freshworks, ServiceNow, and Intercom. Backend integrations with JIRA and PagerDuty.

  • Streamlined workflows between frontline customer service teams and engineering teams

  • Improve agent productivity and reduce resolution time by recommending related product bugs, answers, and articles.

  • Delivered product feedback as a closed-loop feedback mechanism to product managers and Customer Success Teams.

Ready to Automate Customer Service?

In conclusion, the aforementioned 4-step approach can enable your organization to implement a successful customer service strategy using Generative-AI technologies.  The IrisAgent platform has been built around this 4-step approach and has successfully helped customer service teams implement Support Automation. We would love to help you get your GenAI journey started!

Get started to automate customer service the right way!

Automated Customer Service: Frequently Asked Questions

What is automated customer service, and how does it differ from traditional customer service?

Automated customer service refers to using technology, such as chatbots, virtual assistants, and automated phone systems, to assist customers in resolving their inquiries, issues, or requests without direct human intervention. Unlike traditional customer service, which relies heavily on human customer service agents for interactions, automated customer service operates 24/7, providing immediate responses, consistency in handling queries, and cost-efficiency. While traditional customer service offers a personal touch and nuanced problem-solving, automated systems excel in handling routine, repetitive tasks, freeing up customer service teams to focus on more complex and value-added interactions.

What are the key advantages of implementing automated customer service systems?

Implementing automated customer service systems offers several key advantages for businesses. Firstly, it enables 24/7 availability, ensuring customers can get assistance anytime, enhancing customer satisfaction. Additionally, it reduces operational costs by automating routine tasks and queries, allowing companies to allocate resources more efficiently. Automation also ensures consistency in responses and service quality. Moreover, it can simultaneously handle many requests, reducing customer wait times. Automated customer service systems enhance efficiency, accessibility, and cost-effectiveness, making them valuable to modern customer service strategies.

What security measures should be in place to protect customer data when using automated systems?

Robust security measures in cusotmer service automation should include data encryption in transit and at rest to safeguard it from unauthorized access. Access controls and authentication protocols should be in place to restrict system access to authorized personnel only. Regular security audits and vulnerability assessments can help identify and rectify potential weaknesses. Data anonymization techniques can also minimize the risk associated with storing sensitive information. Continuous monitoring of system activity for any unusual patterns or breaches is essential, along with a well-defined incident response plan to address any security incidents promptly. Compliance with relevant data protection regulations, such as GDPR or HIPAA, is crucial to ensure the legal and ethical handling of customer data. A multi-layered security approach is vital to protect customer data in automated systems.

How can businesses measure the success and ROI of their customer service automation initiatives?

Metrics such as customer satisfaction scores (CSAT), Net Promoter Score (NPS), and customer effort score (CES) can gauge customer experience improvements. Tracking the reduction in customer service response times and call volume can indicate efficiency gains. Additionally, businesses should analyze cost savings from reduced labor and operational expenses. Evaluating the resolution rate of customer inquiries and comparing it with human-assisted service can reveal the effectiveness of automation. Finally, monitoring key performance indicators (KPIs) like conversion rates, upsell/cross-sell success, and customer retention can provide insights into the broader impact on revenue generation.

Can I speak to a live agent if needed?

Depending on the system, there may be an option to transfer to a live agent if the automated service cannot resolve a particular issue. This ensures a seamless transition in customer interactions for more complex or personalized queries.

How can I provide feedback on Automated Customer Service interactions?

Feedback mechanisms are often integrated into Automated Customer Service platforms. Customers can typically provide feedback through surveys or rating systems, helping improve the system's performance over time. With IrisAgent's AI platform, customer service teams can provide feedback by upvoting and downvoting AI suggestions for continuous learning and iteration loops.

Continue Reading
Contact UsContact Us

© Copyright Iris Agent Inc. All Rights Reserved